西门子CPU1215C模块6ES7215-1BG40-0XB01 硬件S7-1200 常问问题
1.1通过S7-1200 集成以太网接口***多能建立多少个通信连接?
答:15个,分别是: 3 个用于 HMI,1 个用于编程设备, 8 个用于用户程序中的以太网指令, 3 个用于S7连接(S7-1200只能做Server)。
1.2串口模块支持那些通信协议?
答:支持点到点基于字符的串口通信(ASCII),USS协议(RS 485),Modbus RTU 协议(主/从)。
1.3 S7-1200***多支持几个运动轴的控制?
答:2个。由于目前CPU 提供***多2个PTO输出。
1.4 S7-1200在扩展模块上有何限制?
答:由CPU类型决定,***多可扩展8个信号模块(CPU1211C 不能扩展,CPU1212C可扩展2个,CPU1214C可扩展8个)和3个通信模块,另外可在CPU上插入1个信号板。
1.5 MP277/377面板是否可以与S7-1200连接?
答:可以。可以在WinCC flexible 2008 SP1 中使用SIMATIC S7 300/400的驱动建立与S7-1200的连接,但是该功能没有经过系统测试,功能上并没有保证。在WinCC flexible 2008的SP2有可能增加相应的驱动。在通信上也有一些功能限制,它不支持:符号的DB块;数据类型S5TIME和DATE_AND_TIME,还有一些SIMATIC S7-1200新的数据类型;通信的循环模式;S7 诊断消息。使用WinCC flexible 2008 SP1中建立通信连接时,如图1所示在通信驱动中选择“SIMATIC S7 300/400",在接口中选择“以太网",访问点应为“S7ONLINE",将PLC扩展插槽设为“1",去除“循环操作"的选项。
图1设置通信连接
1.6 S7-1200 如何计算外部电源
答:首先确定CPU可为组态提供多少电流,每个 CPU 都提供了 5 VDC 和 24 VDC 电源:
连接了扩展模块时,CPU 会为这些扩展模块提供 5 VDC 电源。 如果扩展模块的 5
VDC 功率要求超出 CPU 提供的,则必须拆下一些扩展模块直到其电流消耗在要求的范围内。
每个 CPU 都有一个 24 VDC 传感器电源,该电源可以为本地输入点或扩展模块上的
继电器线圈提供 24 VDC。 如果 24 VDC 的电流消耗要求超出 CPU 的输出,则可以增加外部 24 VDC 电源为扩展模块供应 24 VDC。
警告:将外部 24 VDC 电源与 DC 传感器电源并联会导致这两个电源之间有冲突,因为每个电源都试图建立自己***的输出电压电平。该冲突可能使其中一个电源或两个电源的寿命缩短或立即出现故障,从而导致 PLC系统的运行不确定。 运行不确定可能导致死亡、人员重伤和/或财产损失。CPU 上的 DC 传感器电源和任何外部电源应分别给不同位置供电。 允许将多个公共端连接到一个位置。
PLC 系统中的一些 24 V 电源输入端口是互连的,并且通过一个公共逻辑电路连接多个 M端子。 在为非隔离时,CPU 的 24 VDC 电源输入、SM 继电器线圈电源输入以及非隔离模拟电源输入即是一些互连电路。 所有非隔离的 M 端子必须连接到同一个外部参考电位。
警告:将非隔离的 M 端子连接到不同参考电位将导致意外的电流,该电流可能导致 PLC 和连接设备损坏或运行不确定。这种损坏或不确定运行可能导致死亡、人员重伤和/或财产损失。务必确保 PLC 系统中的所有非隔离 M 端子都连接到同一个参考电位。
为了更清晰了解这个问题,下面举了个例子: 一个 CPU 1214C AC/DC/继电器型、3 个 SM 1223 8 DC 输入/8 继电器输出和1个SM 1221 8 DC 输入。该实例一共有 46 点输入和 34 点输出。这里需要说明的是CPU 已分配驱动内部继电器线圈所需的功率,计算中无需包括内部继电器线圈的功率要求。
CPU 功率预算 | 5 VDC | 24 VDC |
CPU 1214C AC/DC/继电器 | 1600 mA | 400 mA |
减 | ||
系统要求 | 5 VDC | 24 VDC |
CPU 1214C,14 点输入 | - | 14 * 4 mA = 56 mA |
3 个 SM 1223,5 V 电源 | 3 * 145 mA = 435 mA | |
1 个 SM 1221,5 V 电源 | 1 * 105 mA = 105 mA | |
3 个 SM 1223,各 8 点输入 | 3 * 8 * 4 mA = 96 mA | |
3 个 SM 1223,各 8 个继电器线圈 | 3 * 8 * 11 mA = 264 mA | |
1 个 SM 1221,8 点输入 | 8 * 4 mA = 32 mA | |
总要求 | 540 mA | 448 mA |
等于 | ||
电流差额 | 5 VDC | 24 VDC |
总电流差额 | 1060 mA | -48 mA |
表1 使用电流计算
在本例中的 CPU 为 SM 提供了足够的 5 VDC 电流,但没有通过传感器电源为所有输入和扩展继电器线圈提供足够的 24 VDC 电流。 I/O 需要 448 mA 而 CPU 只提供 400mA。 该安装额外需要一个至少为 48 mA 的 24 VDC 电源以运行所有包括的 24 VDC 输
入和输出。
1.7 S7-1200 有几种运行模式?
答:有三种,分别是:STOP 模式、STARTUP 模式和RUN模式。
在 STOP 模式下,CPU 不执行任何程序,而用户可以下载项目;
在 STARTUP 模式下,执行一次启动 OB(如果存在)。 在 RUN 模式的启动阶段,
不处理任何中断事件;
在 RUN 模式下,重复执行扫描周期。 中断事件可能会在程序循环阶段的任何点发生
并进行处理。处于 RUN 模式下时,无法下载任何项目。
1.8 S7-1200 支持那些上电模式?
答: 支持三种上电模式,分别为:STOP 模式,暖启动后转到 RUN 模式,暖启动后转到断电前的模式。
如图2可在项目视图中选择相应的PLC设备,在设备配置下的CPU属性“Startup"中进行选取。
图2选择上电模式
在暖启动时,所有非保持性系统及用户数据都将被初始化,保留保持性用户数据。
1.9 CPU有哪些存储区?
答:有三个存储区,分别为:
装载存储区(load memory):用于非易失性地存储用户程序、数据和组态。 项目被下载到 CPU 后,首先存储在装载存储区中。 该存储区位于存储卡(如存在)或 CPU 中。 该非易失性存储区能够在断电后继续保持。 存储卡支持的存储空间比 CPU 内置的存储空间更大。
工作存储区(work memory):属于易失性存储器,用于在执行用户程序时存储用户项目的某些内容。 CPU会将一些项目内容从装载存储器复制到工作存储器中。 该易失性存储区将在断电后丢失,而在恢复供电时由 CPU 恢复。
保持性存储区(retentive memory) :用于在断电时存储所选用户存储单元的值。 发生掉电时,CPU 留出了足够的缓冲时间来保存几个有限的单元的值。 这些保持性值随后在上电时进行恢复。
那么如何显示当前项目的存储器使用情况,可以右键单击相应 CPU(或其中的某个块),然后从菜单中选择“资源"(Resources) 。
图3项目使用存储器情况
如果要显示当前 CPU 的存储器使用情况,可以双击“在线和诊断"(Online and diagnostics),展开“诊断"(Diagnostics),然后选择“存储器"(Memory)。
图4 CPU使用存储器情况
1.10 S7-1200 支持那些数据类型?
答:见下表:
数据类型 | 大 小(bits) | 范围 | 常量输入实例 |
Bool | 1 | 0到1 | TRUE,FALSE,0,1 |
Byte | 8 | 16#00 到 16#FF | 16#12, 16#AB |
Word | 16 | 16#0000 to 16#FFFF | 16#ABCD, 16#0001 |
DWord | 32 | 16#00000000 到16#FFFFFFFF | 16#02468ACE |
Char | 8 | 16#00 到 16#FF | 'A', 't', '@' |
Sint | 8 | -128 to 127 | 123, -123 |
Int | 16 | -32,768 to 32,767 | 123, -123 |
Dint | 32 | -2,147,483,648 到2,147,483,647 | 123, -123 |
USInt | 8 | 0 到 255 | 123 |
UInt | 16 | 0 到 65,535 | 123 |
UDInt | 32 | 0 到 4,294,967,295 | 123 |
Real | 32 | +/-1.18 x 10到 +/-3.40 x 10 C | 123.456, -3.4, -1.2E+12, 3.4E-3 |
LREAL | 64 | +/-2.2250738585072020 ×10到 +/-1.7976931348623157 ×10 | 12345.123456789. -1.2E+40 |
Time | 32 | T#-24d_20h_31m_23s_648ms 到 T#24d_20h_31m_23s_647ms 存储为 -2,147,483,648`ms 到 +2,147,483,647ms |
T#5m_30s 5#-2d T#1d_2h_15m_30x_45ms |
String | 可变的 | 0 到 254 字节字符 | 'ABC' |
DTL | 12个字节 | ***小值: DTL#1970-01-01-00:00:00.0 ***大值: DTL#2554-12-31-23:59:59.999 999 999 |
DTL#2008-12-16- 20:30:20.250 |
表2 数据类型
1.11 有几种存储卡可供CPU使用,有何作用?
答:有两种,分别为: 2MB 6ES7 954-8LB00-0AA0 和 24MB 6ES7 954-8LF00-0AA0。
注意:CPU 仅支持预格式化的 SIMATIC 存储卡。如果使用 Windows 格式化程序对SIMATIC 存储卡重新进行格式化,CPU 将无法使用该存储卡。在将程序复制到格式化的存储卡之前,请删除存储卡中以前保存的所有程序。
存储卡可作为传送卡或程序卡使用,24MB存储卡还用于升级CPU的固件。
传送卡:可以将卡中的程序复制到 CPU 的内部装载存储器,而无需使用 STEP 7 Basic。 插入传送卡后,CPU 首先擦除内部装载存储器中的用户程序和所有强制值,然后将程序从传送卡复制到内部装载存储器。 传送过程完成后,必须取出传送卡。在密码丢失或忘记密码时 ,可使用空传送卡访问受密码保护的 CPU。 插入空传送卡会删除 CPU 内部装载存储器中受密码保护的程序。 随后可以将新的程序下载到 CPU 中。
程序卡:可用作 CPU 的外部装载存储器。 在 CPU 中插入程序卡将擦除 CPU 内部装载存储器的所有内容(用户程序和所有强制值)。 CPU 然后执行外部装载存储器(程序卡)中的程序。 如果将数据下载到插有程序卡的 CPU,将仅更新外部装载存储器(程序卡)。
SIMATIC MC |
S7-1200 PLC装载区是否有程序 | 结果 |
||
卡类型 | 是否有程序 | SIMATIC MC | 装载存储区 | |
未定义 | 否 | 是 | PLC中的项目 | 空的 |
程序卡 | 是 | 否 | MC卡中的项目 | 空的 |
是 | MC卡中的项目 | 空的 | ||
传输卡 | 是 | --- | MC卡中的项目 | |
--- | MC卡中的项目 |
表3 存储卡应用
1.12如何使用存储卡升级CPU固件?
答:注意:如果使用 Windows 格式化程序对SIMATIC 存储卡重新进行格式化,CPU 将无法使用该存储卡。
可以按以下步骤升级固件:
• 将SIMATIC MC 24M 空卡插入计算机的SD读卡器中,使用Windows 浏览器察看存储卡的内容。如果卡不是空的,可以删除名称为“SIMATIC.S7S"或“FWUPDATE.S7S"的文件夹和“S7_JOB.S7S"文件;
下载S7-1200 CPU 操作系统更新文件,双击更新文件夹,设置SIMATIC MC的根目录为解压路经,开始进行文件展开,在解压结束后,卡中根目录下会有文件夹“FWUPDATE.S7S"和文件“S7_JOB.S7S";
• 将卡插入CPU 中,如果CPU 处在运行状态,则CPU进入停止模式。CPU上的维护LED将闪烁,这说明卡已经安装。
• 采用以下任一方法开始更新固件:
CPU 重新上电或
使用软件执行STOP模式向RUN 模式转换(CPU将重启)或
使用软件执行MRES 存储卡复位。
这样CPU进入启动(startup)阶段并且进行固件更新。在固件更新过程中,RUN/STOP LED指示灯在绿和橙之间闪烁。当RUN/STOP LED 指示为STOP模式并且MAINT LED 闪烁时,则CPU的固件更新完毕。
• 从CPU 中拔出存储卡;
• 可使用以下方法重新启动CPU使用新固件:
CPU 重新上电或
使用软件执行STOP模式向RUN 模式转换(CPU将重启)或
使用软件执行MRES 存储卡复位。
用户程序和硬件配置在更新固件是不会受影响,在CPU 重新上电后,CPU 将进入启动(startup )状态。
西门子CPU1215C模块6ES7215-1BG40-0XB0